skip to main content


Search for: All records

Creators/Authors contains: "Gallet, Benoit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Given two datasets (or tables) A and B and a search distance $$\epsilon$$ ϵ , the distance similarity join, denoted as $$A \ltimes _\epsilon B$$ A ⋉ ϵ B , finds the pairs of points ( $$p_a$$ p a , $$p_b$$ p b ), where $$p_a \in A$$ p a ∈ A and $$p_b \in B$$ p b ∈ B , and such that the distance between $$p_a$$ p a and $$p_b$$ p b is $$\le \epsilon$$ ≤ ϵ . If $$A = B$$ A = B , then the similarity join is equivalent to a similarity self-join, denoted as $$A \bowtie _\epsilon A$$ A ⋈ ϵ A . We propose in this paper Heterogeneous Epsilon Grid Joins ( HEGJoin ), a heterogeneous CPU-GPU distance similarity join algorithm. Efficiently partitioning the work between the CPU and the GPU is a challenge. Indeed, the work partitioning strategy needs to consider the different characteristics and computational throughput of the processors (CPU and GPU), as well as the data-dependent nature of the similarity join that accounts in the overall execution time (e.g., the number of queries, their distribution, the dimensionality, etc.). In addition to HEGJoin , we design in this paper a dynamic and two static work partitioning strategies. We also propose a performance model for each static partitioning strategy to perform the distribution of the work between the processors. We evaluate the performance of all three partitioning methods by considering the execution time and the load imbalance between the CPU and GPU as performance metrics. HEGJoin achieves a speedup of up to $$5.46\times$$ 5.46 × ( $$3.97\times$$ 3.97 × ) over the GPU-only (CPU-only) algorithms on our first test platform and up to $$1.97\times$$ 1.97 × ( $$12.07\times$$ 12.07 × ) on our second test platform over the GPU-only (CPU-only) algorithms. 
    more » « less